Obviously, the magnitude of the effects causing preference for one structure over the other need not be large, in view of previous data ${ }^{13,19-21}$ on simple derivatives suggesting that in many cases the two pentacoordinate conformations differ by only a few kilocalories. In the case of the relatively nonrigid trigonal
bipyramidal VF_{5}, an estimate of $1.8 \mathrm{kcal} / \mathrm{mol}$ has been given. ${ }^{19}$

Acknowledgment. Grateful appreciation is expressed to Professor R. Schmutzler, Dr. W. Sheldrick, and Dr. M. Fild of Braunschweig University for valuable discussions.

Calculated and Observed Field Gradients in $\left[\mathrm{M}(\mathrm{CO})_{5_{-}-} \mathrm{P}_{z}\right]^{n}$ Complexes ${ }^{1}$

Cheryl D. Pribula, ${ }^{2}$ Theodore L. Brown,* and Eckard Münck
Contribution from the School of Chemical Sciences and the Department of Physics, University of Illinois, Urbana, Illinois 61801. Received March 6, 1974

Abstract

Using nqr or Mössbauer spectroscopy the field gradient at the metal nucleus, $e q_{z z}$, has been determined in isoelectronic pentacoordinate complexes, $\left[\mathrm{M}(\mathrm{CO})_{j-x} \mathrm{P}_{x}\right]^{n}$, where P is $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ or $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ and M is $\mathrm{Mn}(n=$ $-1), \mathrm{Fe}(n=0)$, or $\mathrm{Co}(n=+1)$. Values of $e q_{\mathrm{dz}} 2$ and $e q_{\mathrm{pz}}$ were calculated for the metal ions $\mathrm{Mn}(-1), \mathrm{Fe}(0)$, and $C o(+1)$ in different electron configurations, using SCF atomic functions. The one-electron $4 p$ orbital contribution to the field gradient is comparable in magnitude with the 3 d term. Theoretical estimates of $e q_{z z}$ for $\mathrm{Fe}(\mathrm{CO})_{5}$ based on eigenvectors from molecular orbital studies are in reasonable agreement with the experimental field gradient. Relative values of $e q_{\mathrm{d} z^{2}}$ for the three metal ions are compared with relative values of $e q_{z z}$ observed for [$\left.\mathrm{Mn}(\mathrm{CO})_{]^{-}}\right]^{-}$ and $\mathrm{Fe}(\mathrm{CO})_{5}$ and estimated for the hypothetical $\left[\mathrm{Co}(\mathrm{CO})_{5}\right]^{+}$. It is concluded that the populations of the planar d orbitals increase relative to the axial, in the order $\mathrm{Mn}<\mathrm{Fe}<\mathrm{Co}$. The effect of phosphorus ligand substitution on $e q_{z z}$ is difficult to interpret, since a simple trend is not observed. It is deduced that $\left[\mathrm{Mn}(\mathrm{CO})_{s-x} \mathrm{P}_{\mathrm{x}}\right]^{-}$and $[\mathrm{Co}-$ $\left.(\mathrm{CO})_{5-x} \mathrm{P}_{x}\right]^{+}$complexes have positive values of $e q_{z z}$ and $e^{2} Q q$.

TThe electric field gradient at the metal nucleus in compounds of the transition metals in low valence states can be expressed to a good approximation as

$$
\begin{align*}
& e q_{z z}=e q_{\mathrm{d}_{z}}\left[N_{\mathrm{d}_{z}{ }^{2}}+1 / 2\left(N_{\mathrm{d} x z}+N_{\mathrm{d}_{y z}}\right)-\right. \\
& \left.\quad\left(N_{\mathrm{d}_{x y}}+N_{\left.\mathrm{d}_{x^{2}-y^{2}}\right)}\right)\right]+e q_{\mathrm{p} z}\left[N_{\mathrm{p} z}-1 / 2\left(N_{\mathrm{p} x}+N_{\mathrm{p} y}\right)\right] \tag{1}
\end{align*}
$$

where $e q_{\mathrm{d}_{2}{ }^{2}}$ and $e q_{\mathrm{p}_{z}}$ are the expectation values for the field gradient operator for a single electron in a valence $\mathrm{d}_{z^{2}}$ or p_{z} orbital, respectively. The N 's are electron populations of the various orbitals. In evaluating field gradient data for different transition metals in similar chemical environments, or for the same element in different chemical situations, it is essential to have some idea of how $e q_{\mathrm{d}_{2}{ }^{2}}$ and $e q_{\mathrm{p} z}$ vary with changing effective nuclear charge or electronic configuration at the metal. We have chosen to investigate this question by study of isoelectronic species of the form $\left[\mathrm{M}(\mathrm{CO})_{5-x} \mathrm{P}_{x}\right]^{n}$, where M is $\mathrm{Mn}(n=-1), \mathrm{Fe}(n=0)$, or $\mathrm{Co}(n=+1)$ and P is a phosphine or phosphite. ${ }^{55} \mathrm{Mn}(I=5 / 2)$ and ${ }^{59} \mathrm{Co}$ $(I=7 / 2)$ are 100% abundant in nature, so that field gradient information is obtainable by nuclear quadrupole resonance (nqr) spectroscopy. From Mössbauer spectroscopy of ${ }^{57} \mathrm{Fe}\left({ }^{57} \mathrm{Fe}^{m}\right.$ has $I={ }^{3} / 2$), it is possible to obtain information regarding the field gradient at iron. By utilizing the best available values for the nuclear quadrupole moments, $e Q$, the quadrupole coupling

[^0]constants, $e^{2} q_{z 2} Q / h$, may be converted to estimates of field gradients, $e q_{z z}$. Previous nqr ${ }^{3}$ and Mössbauer ${ }^{4-6}$ spectral work on five-coordinate species in these series has shown the presence of fairly large field gradients at the central metal. Since the metals in these diamagnetic systems obey the 18 -electron "krypton rule," i.e., have all their valence orbitals occupied, the field gradients must arise from differential levels of occupancy of these orbitals. In this contribution we examine from both theoretical and experimental viewpoints the effect on $e q_{z z}$ of changing the central metal nuclear charge and electronic configurations. In addition, we have measured experimentally the effects of substitutions on the parent $\left[\mathrm{M}(\mathrm{CO})_{5}\right]^{n}$ species by triphenylphosphine and trimethyl phosphite.

Experimental Section

Materials. Dimanganese decacarbonyl, $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$, was obtained from Pressure Chemical Co. or prepared according to a standard procedure ${ }^{7}$ and stored under argon. Dicobalt octacarbonyl, $\mathrm{Co}_{2}(\mathrm{CO})_{8}$, (Pressure Chemical Co.) was stored at 0° under argon or nitrogen. Triiron dodecacarbonyl, $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ was obtained from Strem Chemicals, Inc., or prepared by a standard method. ${ }^{8}$ It was purified by extraction with pentane.
Triphenylphosphine, PPh_{3}, and trimethyl phosphite, $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$, were purchased from Aldrich Chemical Co.

[^1]The manganese anions, without exception, are quite susceptible to oxidation by air, although the $\mathrm{Ni}(1,10 \text {-phen })_{3}{ }^{2+}$ salts are considerably more stable than their Na^{+}or Li^{+}counterparts. The anions containing PPh_{3} as a ligand are especially air sensitive. All preparations and handling of the manganese salts were carried out in a glove box with an argon atmosphere.
The iron complexes are affected by air only over an extended period of time, if at all. The cobalt cations are air stable as the tetraphenylborate salts. Preparations of these compounds, however, involved use of air-sensitive starting materials, so Schlenk techniques, using a nitrogen atmosphere, were employed.
$\mathrm{NaMn}(\mathrm{CO})_{5}$ was prepared from $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ and dilute sodium amalgam in THF, as described elsewhere. ${ }^{9}$ To prepare LiMn(CO) ${ }_{5}$, a suspension of a sixfold excess of lithium sand (Foote Mineral Co .) in $\mathrm{Et}_{2} \mathrm{O}$ was stirred vigorously using a glass-covered stirring bar. After about 1 hr , shiny platelets of lithium metal appeared on the liquid surface, and $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ was then added. The mixture was stirred for about 4 hr and then filtered. Solvent was removed at room temperature to give the product.
Tris(1,10-phenanthroline)nickel(II) was prepared as the sulfate or bromide salt by treating a methanolic solution of the ligand with a stoichiometric amount of hydrated NiSO_{4} or NiBr_{2}. The resultant dark rose solution was treated with Drierite, filtered, and evaporated to dryness, leaving the pale pink $\mathrm{Ni}(1,10-\mathrm{phen})_{3}{ }^{2+}$ salt.
$\mathrm{Ni}(1,10-\mathrm{phen})_{5}\left[\mathrm{Mn}(\mathrm{CO})_{]_{2}}\right.$ was obtained by adding a slight excess of the cation to a methanol solution of $\mathrm{NaMn}(\mathrm{CO})_{5}$. The dark red precipitate which formed immediately was collected by filtration, washed with many portions of water and then with a small portion of methanol, and finally dried under vacuum.
The $\mathrm{Ni}(1,10 \text {-phen })_{3}{ }^{2+}$ salts of the $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$-substituted anions were generally prepared in the same manner from their sodium salts. The $\mathrm{Ni}(1,10 \text {-phen })_{3}\left[\mathrm{Mn}(\mathrm{CO})_{b-x}\left(\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right)_{x}\right]_{2}$ compounds occur as very dark purple or black needles, soluble in acetone and THF.
$\mathrm{NaMn}(\mathrm{CO})_{4} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ was prepared by adaptation of a published procedure for synthesis of $\mathrm{NaMn}(\mathrm{CO})_{4} \mathrm{PPh}_{3} .{ }^{10} \mathrm{NaMn}$ $(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right)_{2}$ was prepared from $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{3}\left[\mathrm{P}_{\left.\left(\mathrm{OCH}_{3}\right)_{3}\right]_{2}{ }^{11}}\right.$ by treatment with sodium amalgam.
The $\mathrm{Ni}(1,10 \text {-phen })_{3}{ }^{2+}$ salts of the PPh_{3}-substituted anions are more difficult to obtain in a pure state, since, aside from their greater sensitivity to air, washing with water (and for the disubstituted species, washing with methanol or ethanol) tends to convert the anion into the corresponding hydride complex. ${ }^{10,12}$
$\mathrm{NaMn}(\mathrm{CO})_{4} \mathrm{PPh}_{3}$ was obtained by a published procedure ${ }^{30}$ and converted to the $\mathrm{Ni}(1,10 \text {-phen })_{3}{ }^{2+}$ salt in the usual manner. ${ }^{13}$ The crude product was collected by filtration, redissolved in acetone, filtered, pumped dry, washed with a small volume of THF and a large volume of $\mathrm{Et}_{2} \mathrm{O}$, and finally dried. A dark brown solid, soluble in acetone and slightly soluble in THF, was thus obtained.
The complexes $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ and $\mathrm{Fe}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{2}$ were obtained by treatment of a benzene solution of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ with about 1.5 mol of $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ per mole of iron. ${ }^{14}$ After the initial bubbling ceased, the mixture was heated to boiling for about 3 hr . Then the suspension was filtered and the residue extracted with benzene. The filtrate was pumped to dryness and the residue was sublimed at $\sim 0.01 \mathrm{~mm}$. $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ was collected at $\sim 40^{\circ}$ and $\mathrm{Fe}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{2}$ at $\sim 60^{\circ}$.
The corresponding triphenylphosphine complexes, $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{PPh}_{3}$ and $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$, were prepared according to the method of Cotton and Parish. ${ }^{15}$
$\left\{\mathrm{Co}(\mathrm{CO})_{2}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{3}\right\} \mathrm{BPPh}_{4}$ and $\left\{\mathrm{Co}(\mathrm{CO})\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{4}\right\} \mathrm{BPh}_{4}$ were prepared as described in the literature. ${ }^{16} \quad\left\{\mathrm{Co}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{5}\right\}-$ BPh_{4} was prepared by adaptation of a literature procedure. ${ }^{17}$ An acetone solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was treated with twice the needed amount of the drying agent 2,2 -dimethoxypropane and was

[^2]stirred for 0.5 hr . Ten moles of $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ per mole of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ was then added. The dark green solution was stirred for 5 min , after which the theoretical amount of NaBPh_{4} was added, followed by a large portion of $\mathrm{Et}_{2} \mathrm{O}$. The yellow solid, $\left\{\mathrm{Co}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{5}\right\}-$ BPh_{4}, which formed almost immediately, was collected by filtration, recrystallized from acetone-water, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried.

The previously unknown complex $\left\{\mathrm{Co}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{2}\right\}^{+}$was obtained as a mixture with the tris(phosphite) complex when a pentane solution of $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ was slowly added to a pentane solution of excess $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ at $\leq-20^{\circ}$. The work-up of the product, including conversion of the $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$salt to the tetraphenylborate (-I), was carried out as described for the tris- and tetrakissubstituted complexes. The complex was characterized by its ir (Table I) and nmr spectra (virtual triplet at $\tau \sim 6.5$, superimposed on the known resonances due to $\left.\left\{\mathrm{Co}(\mathrm{CO})_{2}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{3}\right\}^{+}\right)$.

Table I. Complexes of the Type $\left[\mathrm{M}(\mathrm{CO})_{5-x} \mathrm{P}_{x}\right]^{n}$ and Their Solution (Acetone) Infrared Spectra in the Carbonyl Region ${ }^{a}$

P, x	$\mathrm{Mn},-1$		$\mathrm{Fe}, 0$		Co, +1	
$-, 0$	$\mathrm{A}_{1}{ }^{\prime \prime}$	1898 s	$\mathrm{A}_{1}{ }^{\prime \prime}$	2020 s	b	
$\mathrm{PPh}_{3}, 1$	E^{\prime}	1862 vs	E^{\prime}	1994 vs	b	
	A_{1}	1938 s	A_{1}	2048 s		
	A_{1}	1844 s	A_{1}	1971 s		
$\mathrm{PPh}_{3}, 2$	E	1812 vs	E	1940 vs		
	L 1812 vs		$\mathrm{A}_{1}{ }^{\prime}$	1950 vw	$\mathrm{A}_{1}{ }^{\prime}$	2072 vw
		c			E^{\prime}	
$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, 1$			E^{\prime}	1894 vs		2008 vs
	A_{1}	1952 s	A_{1}	2058 s		
	A_{1}	1857 s(sh)	A_{1}	1982 s		b
	E	1824 vs	E	1949 vs		
$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, 2$	E^{\prime}	1786 s	$\mathrm{A}_{1}{ }^{\prime}$	1995 vw	$\mathrm{A}_{1}{ }^{\prime}$	2108 vw
			E^{\prime}	1908 vs	E^{\prime}	2025 vs
$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, 3$				1937 s ${ }^{\text {c }}$	A_{1}	2037 s
		d	B_{1}	1879 vs	B_{1}	1982 vs
			(hydr	ocarbon)		
$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, 4$		b		b	A	1970 s
$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, 5$		b		b		

${ }^{a}$ Frequencies given in cm^{-1}. ${ }^{b}$ Compound not reported. ${ }^{c}$ Acetone infrared spectrum is unreported. ${ }^{d}$ An infrared spectrum has been reported for this compound in $\mathrm{CHCl}_{3 .}{ }^{11}$ However, since we have noted that $\mathrm{Mn}(\mathrm{CO})_{5}-$ reacts with chlorinated solvents to form $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Cl}$, it is likely that the reported spectrum is attributable to $\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right) \mathrm{Cl}$.

Some of the compounds studied, the manganese anions in particular, are too air sensitive to be analyzed by conventional means. However, by utilizing a tared metal sleeve which was filled with sample, sealed, and reweighed, accurate carbon analyses were obtained. These results were in excellent agreement with the calculated per cent C for both $\mathrm{NaMn}(\mathrm{CO})_{5}$ and $\mathrm{LiMn}(\mathrm{CO})_{5}$. The technique also indicated the absence of hydrogen from both samples. A further check on sample purity involved allowing a sample to decompose in air, then analyzing the residues to check for a $1: 1$ molar ratio of alkali metal to transition metal. For $\mathrm{NaMn}(\mathrm{CO})_{5}$ the observed ratio was very close to 1 . The $\mathrm{LiMn}(\mathrm{CO})_{5}$ residues gave variable results, but infrared and nmr spectral evidence indicated that the material was of the same purity as the sodium compound.
All compounds were additionally characterized by their infrared spectra in the carbonyl region (Table I), which were found to comply with the patterns expected from group theoretical consideration. To facilitate direct comparisons, we report in Table I acetone ir data for several of the complexes for which this information was not previously available.
The results of the analyses carried out by the microanalytical laboratory are listed in Table II, provided in the microfilm edition. See paragraph at end of paper regarding microfilm material.
Instrumental. The nuclear quadrupole resonance spectra were obtained on a Wilks Scientific Corporation (Model NQR 1A) spectrometer, or on the apparatus described by LaRossa and Brown. ${ }^{18}$ A 30 -sec time constant was normally employed. Fre-

[^3]quencies were measured as described elsewhere. ${ }^{3}$ In most instances the frequencies are accurate to within $\pm 0.01 \mathrm{MHz}$.

The Mössbauer spectrometer is of the constant acceleration type, ${ }^{19}$ velocity-calibrated with an iron metal absorber. The source was ${ }^{57} \mathrm{Co}$ diffused into Cu .

Calculation of Field Gradients

The electronic field gradient at a nucleus, $e q_{z 2}$, can be expressed as the sum of the field gradients due to all external charges. The electronic contribution to $e q_{2 z}$ is given by ${ }^{20}$

$$
\begin{align*}
& e q_{z 2, \text { elec }}=\sum_{i} e q_{i}= \\
& \quad e \sum_{i} \int \Psi_{\mathrm{M}}\left(3 \cos ^{2} \theta_{i}-1\right) / r_{i}{ }^{3} \Psi_{\mathrm{M}}{ }^{*} \mathrm{~d} \tau \tag{2}
\end{align*}
$$

where ψ_{M} is the molecular electronic wave function and θ_{i} and r_{i} are polar coordinates in the diagonalized field gradient axis system.

If only electrons occupying metal valence orbitals are considered, eq $q_{z z}$ is given by eq 1 . This expression is frequently simplified further by assuming that only d electrons contribute to the electric field gradient.

It should be noted that in using eq 1 to calculate $e q_{z 2}$, no allowance is made for the contribution of core electrons to the field gradient. If the core electrons were distributed spherically about the nucleus, their effect on $e q_{z z}$ would be zero. However, as shown by Sternheimer, ${ }^{21}$ these electrons are polarized by the valence electrons, so that they do contribute to the net field gradient. The magnitude of the Sternheimer effect due to valence electrons is small, and approximately constant for a group of similar compounds. ${ }^{22}$ Its neglect should therefore not substantially affect conclusions regarding trends in $e q_{z z}$ in an isoelectronic series of molecules.

To evaluate $e q_{2 z}$ from eq 2 we make the assumption, discussed elsewhere, ${ }^{23,24}$ that only valence shell electrons centered on the quadrupolar nucleus contribute to the field gradient. This limits us to $3 \mathrm{~d}, 4 \mathrm{~s}$, and 4 p orbitals. We express Ψ_{M} as a product of sums of atomic functions, Ψ_{λ}, which are linear combinations of Slater-type orbitals ${ }^{25}$

$$
\begin{equation*}
\Psi_{\lambda}=\sum_{j} c_{j \lambda} \chi_{j \lambda} \tag{3}
\end{equation*}
$$

where the subscript j refers to the j th basis function of symmetry λ. The basis functions χ are Slater-type orbitals with integer quantum numbers

$$
\begin{equation*}
\chi_{j}(r, \theta, \phi)=R_{j \lambda}(r) Y^{\lambda \mathrm{m}}(\theta, \phi) \tag{4}
\end{equation*}
$$

and $R_{j \lambda}(r)$ is the radial part of the function

$$
\begin{equation*}
R_{j \lambda}(r)=\left(2 n_{j \lambda}\right)!^{-1 / 2}\left(2 \sum_{j \lambda}\right)^{n_{1 \lambda}+1 / 2 r^{n \lambda \lambda}-1} e^{-5 i \lambda r} \tag{5}
\end{equation*}
$$

$Y^{\lambda m}(\theta, \phi)$ are the normalized complex spherical harmonics.
Integrals of the type

$$
\begin{equation*}
\int Y^{\lambda m}(\theta, \phi)\left(3 \cos ^{2} \theta-1\right) Y^{\lambda^{\prime} m^{\prime}}(\theta, \phi) \sin \theta \mathrm{d} \theta \mathrm{~d} \phi \tag{6}
\end{equation*}
$$

(19) E. Kankeleit, Rev. Sci. Instrum., 35, 194 (1964).
(20) E. A. C. Lucken, "Nuclear Quadrupole Coupling Constants," Academic Press, London, 1969.
(21) R. M. Sternheimer, Phys. Rev., 80, 102 (1950).
(22) See ref 20, Chapter 5, for a more general discussion and exemplary values.
(23) F. A. Cotton and C. B. Harris, Proc. Nat. Acad. Sci. U. S., 56, 12 (1966).
(24) (a) G. M. Bancroft, M. J. Mays, and B. E. Prater, J. Chem. Soc. A, 956 (1970); (b) M. G. Clark, A. G. Maddock, and R. H. Platt, J. Chem. Soc., Dalton Trans., 281 (1972).
(25) E. Clementi, IBM J. Res. Develop., Suppl., 9, 2 (1965).
are zero unless $\lambda=\lambda^{\prime}$ or $\lambda=\lambda^{\prime} \pm 2$, although when $\lambda=\lambda^{\prime}=0$, the integral also equals zero because of spherical symmetry, Thus the only nonzero integrals are those involving the $4 \mathrm{~s}-3 \mathrm{~d}, 3 \mathrm{~d}-3 \mathrm{~d}$, and $4 \mathrm{p}-4 \mathrm{p}$ pairs of orbitals.

The formal oxidation states of the metals in the isoelectronic series $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}, \mathrm{Fe}(\mathrm{CO})_{5}$, and $\left[\mathrm{Co}(\mathrm{CO})_{5}\right]^{+}$, are $-1,0$, or +1 , respectively. Clementi orbitals are available for $\mathrm{Mn}(-1), \mathrm{Fe}(0)$, and $\mathrm{Co}(+1)$ for a $4 \mathrm{~s}^{23} \mathrm{~d}^{6}$ configuration (${ }^{6} \mathrm{D}$ state). Using these, the results of the calculation for the field gradient due to a single electron in a metal $3 \mathrm{~d}_{z^{2}}$ orbital are as listed in Table III.

Table III. Calculated Values of One-Electron Atomic Orbital Field Gradient Contributions

Metal (charge)	Configuration	$10^{15} e q_{i}, \mathrm{esu} / \mathrm{cm}^{3}$
$\operatorname{Mn}(-1)$	$4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$	$-6.70\left(e q_{\mathrm{d}_{2}}\right)^{a}$
$\mathrm{Fe}(0)$	$4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$	$-9.23\left(e q_{\mathrm{d}_{2}}\right)^{a}$
$\mathrm{Co}(+1)$	$4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$	$-12.16\left(e q_{\mathrm{d}_{2}}{ }^{2}\right)^{a}$
$\mathrm{Fe}(0)$	$4 \mathrm{~s}^{13} 3 \mathrm{~d}^{6} 4 \mathrm{p}^{1}$	$-8.79\left(e q_{\mathrm{d}_{2}}\right)^{3}$
		$-4.97\left(e q_{\mathrm{p}_{2}}\right)^{6}$

${ }^{a}$ Atomic orbitals of ref 25 are utilized. ${ }^{b}$ Atomic orbitals of ref 31 are utilized.

The atomic field gradients for $\mathrm{Mn}(-1)$ and $\mathrm{Fe}(0)$, in $\mathrm{s}^{2} \mathrm{~d}^{6}$ configuration, have previously been calculated, ${ }^{88}$ using Clementi's functions. Our results for these two cases are in agreement with the earlier result.

The electronic configuration $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{8} 4 \mathrm{p}^{6}$ is almost certainly an inaccurate description of the orbital population distribution in $\left[\mathrm{M}(\mathrm{CO})_{\mathrm{j}}\right]^{n}$ species. Molecular orbital calculations on $\mathrm{Fe}(\mathrm{CO})_{5}{ }^{27-30}$ indicate that a more reasonable configuration is $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{6} 4 \mathrm{p}^{1}$. Values of $e q_{i}$ for 3 d and 4 p electrons can be calculated using the wave functions of Strange, et al., ${ }^{31}$ for $\mathrm{Fe}(0)$ in the $4 s^{1} 3 \mathrm{~d}^{6} 4 \mathrm{p}^{1}$ configuration (${ }^{(\mathrm{P}}$ state). Using these orbitals, the expectation values for the integrals $\left\langle\psi_{1,}\right| V_{z z}\left|\psi_{\mathrm{sd}}\right\rangle,\left\langle\psi_{3 \mathrm{~d}}\right|$ $V_{z z}\left|\psi_{3 d}\right\rangle$, and $\left\langle\psi_{4 p}\right| V_{z z}\left|\psi_{\mathrm{ip}}\right\rangle$ (where $V_{z z}=\left(3 \cos ^{2} \theta-1\right) /$ r^{3}) were evaluated. The first of these integrals is essentially zero. Values for the other two are given in Table III.

It is especially interesting that $e q_{p z}$ is on the same order of magnitude as $e q_{\mathrm{d}_{2}}$. It is also noteworthy that $e q_{\mathrm{d}_{2}}$ for $\mathrm{Fe}(0)$ in the ${ }^{7} \mathrm{P}$ state differs by only about 5% from that for $\mathrm{Fe}(0)$ in the ${ }^{5} \mathrm{D}$ state. The results of the calculations based on accurate atomic wave functions thus indicate that configurational changes can be expected to make only minor changes in the orbital field gradient contributions, whereas changes in central metal effective nuclear charge occasion large variations. Roo-than-Hartree-Fock atomic orbitals for the $s^{1 /} \mathrm{d}^{6} \mathrm{p}^{1}$ configuration have not been computed for $\mathrm{Mn}(-1)$ or $\mathrm{Co}(+1)$. Thus, corresponding calculations cannot be carried out for these ions. Since, however, the values of $e q_{\mathrm{d}^{2}}$ for $\mathrm{Fe}(0)$ in the $\mathrm{s}^{1} \mathrm{~d}^{6} \mathrm{p}^{1}$ and $\mathrm{s}^{2} \mathrm{~d}^{6}$ configurations are closely similar, the values of $e q_{d_{z}}$ for $\mathrm{Mn}(-1)$ and
(26) G. Malli and S. Fraga, Theor. Chim. Acta, 6, 54 (1966).
(27) A. F. Schreiner, Ph.D. Thesis, University of Illinois, Urbana, III., 1967.
(28) A. F. Schreiner and T. L. Brown, J. Amer. Chem. Soc., 90, 3366, 5947 (1968).
(29) I. H. Hillier, J. Chem. Phys., 52, 1948 (1970).
(30) A. Trautwein and F. E. Harris, Theor. Chim. Acta, 30, 45 (1973).
(31) R. S. Strange, W. D. White, and R. S. Drago, Theor. Chim. Acta, 23, 103 (1971).

Table IV. Nqr Data for $\left[\mathrm{M}(\mathrm{CO})_{5-x} \mathrm{P}_{x}\right]^{n}$ Complexes (25 ${ }^{\circ}$)

	ν_{1}, MHz	ν_{2}, MHz	ν_{3}, MHz	$\left\|e^{2} Q q_{z z}\right\| / h$	η
$\mathrm{Ni}(1,10 \text {-phen })_{3}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{2}$	9.42	18.67		62.4	0.08
	9.66	18.99		63.5	0.12
$\mathrm{LiMn}(\mathrm{CO})_{5}$	10.16	20.07		67.1	0.10
$\mathrm{NaMn}(\mathrm{CO})_{5}$	10.48	19.24		65.0	0.26
$\mathrm{Ni}(1,10 \text {-phen })_{3}\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{2}$	11.52	22.92		76.5	0.05
$\mathrm{Ni}(1,10 \text {-phen })_{3}\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{PPh}_{3}\right]_{2}$	$12.92{ }^{\text {a }}$	25.31		84.7	0.13
		25.69		85.8	0.06
$\left\{\mathrm{Co}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{2}\right\} \mathrm{BPh}_{4}$	~ 9.7	19.26	29.12	136.1	0.13
$\left\{\mathrm{Co}(\mathrm{CO})_{2}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{3}\right\} \mathrm{BPh}_{4}$	15.68	18.09	28.56	136.3	0.47
$\left\{\mathrm{Co}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{5}\right\} \mathrm{BPh}_{4}$		21.93	32.92	153.7	0.04
$\left\{\mathrm{Co}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right\} \mathrm{Co}(\mathrm{CO})_{4}{ }^{\text {b }}$		22.77	34.20	159.7	0.05

${ }^{a}$ Average of two very closely spaced resonances. ${ }^{b}$ K. Ogino and T. L. Brown, Inorg. Chem., 10, 517 (1971).

Table V. Mössbauer Data for $\mathrm{Fe}(\mathrm{CO})_{5-x} \mathrm{P}_{x}$ Complexes

	Temp, ${ }^{\circ} \mathrm{K}$	$\left\|\Delta E_{\mathrm{q}}\right\|, \mathrm{mm} / \mathrm{sec}$	Sign of $\left\|\Delta E_{\mathbf{q}}\right\|^{b}$	η	$e^{2} Q q_{z z} / h{ }^{\prime}{ }^{\prime} \mathrm{MHz}$	Ref
$\mathrm{Fe}(\mathrm{CO})_{5}$	77	2.60	$+^{c}$	$0.0^{\text {d }}$	60.5	6
	78	2.57			59.8	g
	253	2.57			59.8	h
$\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{PPh}_{3}$	77	2.54	$+^{d}$	$0.0^{\text {d }}$	59.1	6
	Ambient	2.42			56.3	5
$\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$	77	2.76	$+^{d}$	$0.0{ }^{\text {d }}$	64.2	6
$\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$	4.2	2.27	+	~ 0.0	52.8	a
	Ambient	2.26			52.6	a
$\mathrm{Fe}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{2}$	4.2	2.20	$+$	~ 0.0	51.2	a
	Ambient	2.28			53.0	a
$\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{P}\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}$	Ambient	2.22	$e$$e$		51.6	5
$\mathrm{Fe}(\mathrm{CO})_{3}\left\{\mathrm{P}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}\right\}_{2}$	Ambient	2.27			52.8	5

${ }^{a}$ This work. ${ }^{b} Q\left({ }^{57} \mathrm{Fe}^{\mathrm{m}}\right)$ is positive. ${ }^{c}$ Reference 5. ${ }^{d}$ Reference 33. e Not determined, but assumed to be positive. ${ }^{f}$ For ${ }^{67} \mathrm{Fe}^{\mathrm{m}}, 1$ $\mathrm{mm} / \mathrm{sec} \equiv 11.63 \mathrm{MHz} . \quad$ R. H. Herber, W. R. Kingston, and G. K. Wertheim, Inorg. Chem., 2, 153 (1963). ${ }^{h}$ M. Kalvius, V. Zahn, P. Kienle, and H. Eicher, Z. Naturforsch. A, 17, 494 (1962).
$C o(+1)$ in the $s^{1 d^{6}} p^{1}$ configuration should thus be quite similar to the values found for the $s^{2} d^{6}$ configuration.

Nqr Results and Discussion

The ${ }^{55} \mathrm{Mn}$ and ${ }^{59} \mathrm{Co} \mathrm{nqr}$ frequencies for Mn and Co compounds, respectively, are given in Table IV. Since $\left[\mathrm{Co}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right)_{2}\right]^{+}$was isolated as a mixture with $\left[\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right)_{3}\right]^{+}$, the resonances of both complexes were observed in the sample. Those due to the tris(phosphite) complex were identified by comparison with the spectrum of that pure compound. It is interesting, but unfortunate, that the nqr resonances of $\left[\mathrm{Co}(\mathrm{CO})\left(\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right)_{4}\right] \mathrm{BPh}_{4}$ were not observed, despite repeated attempts and despite the fact that the other cobalt complexes produce intense resonance signals.
In a few cases, two sets of resonances were found, as a result of crystallographic nonequivalence within the unit cell. For $\mathrm{Ni}(1,10-\mathrm{phen})_{s}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{2}$, the nqr results are consistent with the known crystal structure. ${ }^{32}$ The sets of data for this molecule are easily paired as given in Table IV, since the alternative pairing would lead to an imaginary value for η. The signals arising from the anion more severely distorted from axial symmetry, which Frenz and Ibers label molecule I, are probably those associated with the larger value of η, 0.12 . For the two complexes in which two sets of signals were found, the average value of $\left\{e^{2} q Q_{z z} / h \mid\right.$ is used in the discussion to follow.

With the exception of the $\mathrm{NaMn}(\mathrm{CO})_{5}$ compound, the asymmetry parameter is within about 0.15 of zero

[^4]in all instances in which the geometry about the metal is expected to possess axial symmetry. The rather large value of η in $\mathrm{NaMn}(\mathrm{CO})_{5}$ suggests that the Na^{+}may be coordinated to a radial CO group of the $\mathrm{Mn}(\mathrm{CO})_{5}{ }^{-}$. In any event, the geometry about Mn in the sodium salt is such as to strongly perturb the ion away from axial symmetry. The expected large departure from axial symmetry is observed in $\left\{\mathrm{Co}(\mathrm{CO})_{2}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{\}}\right\} \mathrm{BPh}_{4}$, in which there are presumably two axial and one equatorial phosphites.

Mössbauer data for the complexes $\mathrm{Fe}(\mathrm{CO})_{5-x} \mathrm{P}_{x}$ are presented in Table V. The sign of $\left|\Delta E_{\mathrm{a}}\right|$ (and hence, of $e^{2} q_{22} Q / h$ and $e q_{22}$) has been shown to be positive for $\mathrm{Fe}(\mathrm{CO})_{5}{ }^{4}$ and its PPh_{3} derivatives; ${ }^{38}$ the present study shows this to be the case for the $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$-substituted compounds as well.

Attempts to synthesize compounds containing the $\mathrm{Co}(\mathrm{CO})_{0}^{+}$ion have so far been unsuccessful. It is possible to estimate $e^{2} q_{z 2} Q / h$ for $\mathrm{Co}(\mathrm{CO})_{5}^{+}$, however, by employing determinations of $e^{2} q_{22} Q / h$ for isoelectronic pairs of Fe and Co complexes, e.g., $\left[\mathrm{M}(\mathrm{CO})_{3}\right.$ $\left.\left(\mathrm{PPH}_{3}\right)_{2}\right]^{n}$ and $\left[\mathrm{M}(\mathrm{CO})_{3}\left(\mathrm{P}^{(}\left(\mathrm{OCH}_{3}\right)_{3}\right)_{2}\right]^{n}$. The relationship in eq 7 is employed to approximate $e^{2} Q q_{z z} / h$ for the

$$
\begin{equation*}
\frac{\frac{\left|e^{2} Q q_{z 2}\right|}{h}\left(\left[\mathrm{Co}(\mathrm{CO})_{0}\right]^{+}\right)}{\frac{e^{2} Q q_{z 2} \mid}{h}\left(\left[\mathrm{Co}(\mathrm{CO})_{3} \mathrm{P}_{2}\right]^{+}\right)}=\frac{\frac{e^{2} Q q_{z 2} \mid}{h}\left(\mathrm{Fe}(\mathrm{CO})_{5}\right)}{\frac{\left[e^{2} Q q_{z z} \mid\right.}{h}\left(\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{P}_{2}\right)} \tag{7}
\end{equation*}
$$

hypothetical cation $\left[\mathrm{Co}(\mathrm{CO})_{5}\right]^{+}$. The assumption made is that changes in electronic configuration on going
(33) M. G. Clark, W. R. Cullen, R. E. B. Garrod, A. G. Maddock, and J. R. Sams, Inorg. Chem., 12, 1045 (1973).
from $\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{P}_{2}$ to $\left[\mathrm{Co}(\mathrm{CO})_{3} \mathrm{P}_{2}\right]^{+}$are the same as those which would occur between $\mathrm{Fe}(\mathrm{CO})_{5}$ and $\left[\mathrm{Co}(\mathrm{CO})_{5}\right]^{+}$. Slater, et al., have utilized ${ }^{34}$ a similar relationship, in comparing the known quadrupole coupling constants of ferrocene and cobaltocenium ion. They predict $e^{2} q_{z z} Q / h$ for $\left[\mathrm{Co}(\mathrm{CO})_{5}\right]^{+}$to be +170 MHz .
For the two pairs of complexes for which $e^{2} q_{z z} Q / h$ are known, we calculate $\left(e^{2} q_{2 z} Q / h\right)\left(\left[\mathrm{Co}(\mathrm{CO})_{5}\right]^{+}\right)=150$ $\mathrm{MHz}\left(\mathbf{P}=\mathrm{Ph}_{3}\right)$ or $161 \mathrm{MHz}\left(\mathbf{P}=\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right)$. The average value of 156 MHz is used in the discussion which follows. Because of the close structural and electronic similarities between $\left[\mathrm{M}(\mathrm{CO})_{5}\right]^{n}$ and $[\mathrm{M}-$ $\left.(\mathrm{CO})_{3} \mathrm{P}_{2}\right]^{n}$ complexes, our estimate of $e^{2} q_{22} Q / h$ for Co$(\mathrm{CO})_{5}{ }^{+}$is probably more accurate than the previous estimate.

For more direct comparison of the field gradients in the different metal complexes, the values of $e^{2} q_{22} Q / h$ are divided by $e Q / h$ to determine the field gradient $e q_{z z}$. Values of Q for the three nuclei, taken from the recent literature, are $Q\left({ }^{55} \mathrm{Mn}\right)=+0.40 \mathrm{~b},{ }^{35} Q\left({ }^{57} \mathrm{Fe}^{\mathrm{m}}\right)=$ $+0.19 \mathrm{~b},{ }^{36}$ and $Q\left({ }^{59} \mathrm{Co}\right)=+0.40 \mathrm{~b} .{ }^{37}$ The field gradients thus calculated from the data of Tables IV and V are listed in Table VI.

Table VI. Observed Field Gradients, $e q_{z z}$, for the Complexes $\left[\mathrm{M}(\mathrm{CO})_{5-x} \mathrm{P}_{x}\right]^{n a, b}$

x, \mathbf{P}	$-\mathrm{M}, n$			
Mn, -1	$\mathrm{Fe}, 0^{c}$	$\mathrm{Co},+1$		
$0, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$	± 2.17	+4.39	$\pm 5.4^{d}$	
$2, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$		+3.64	+3.83	
$\left.3, \mathrm{PCH}_{3}\right)_{3}$		-3.72	± 4.69	
$4, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$	-	-	± 4.70	
$5, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$	-	-	± 5.30	
$1, \mathrm{PPh}_{3}$	± 2.94	+4.29	-	
$2, \mathrm{PPh}_{3}$		+4.66	± 5.51	

${ }^{a}$ The field gradients are given in units of $10^{15} \mathrm{esu} / \mathrm{cm}^{3} .{ }^{b} \mathrm{~A}$ dash indicates the complex is unknown. ${ }^{c}$ Low temperature quadrupole splittings were used to obtain the iron field gradients. ${ }^{d}$ This value was estimated as described in the text.

Several MO calculations have been reported for $\mathrm{Fe}(\mathrm{CO})_{5}{ }^{27-30}$ Using the reported orbital populations and the values listed in Table III for the orbital field gradient contributions, for Fe in the $4 \mathrm{~s}^{13} \mathrm{~d}^{6} 4 \mathrm{p}^{1}$ configuration, the total valence electronic contribution to the field gradient can be estimated using eq 1 . When this is done for the populations reported by Schreiner and Brown, ${ }^{28}$ a value for $e q_{z z}$ of $+3.2 \times 10^{15} \mathrm{esu} / \mathrm{cm}^{3}$ is obtained. Using the results of the calculation by Trautwein and Harris, ${ }^{30} e q_{z z}$ is computed to be $+4.6 \times$ $10^{15} \mathrm{esu} / \mathrm{cm}^{3}$. (Hillier ${ }^{29}$ does not report the individual orbital populations, so the corresponding calculation cannot be carried out for his MO results.) The estimates based on the MO calculations are in reasonable agreement with the $e q_{z z}$ value deduced from the observed quadrupole splitting in $\mathrm{Fe}(\mathrm{CO})_{5},+4.4 \times 10^{15}$ $\mathrm{esu} / \mathrm{cm}^{-3}$.

The 4 p orbital contribution to $e q_{z z}$ in transition metal
(34) J. L. Slater, M. Pupp, and R. K. Sheline, J. Chem. Phys., 57, 2105 (1972).
(35) E. Handrich, A. Steudel, and H. Walther, Phys. Lett. A, 29, 486 (1969).
(36) N. N. Greenwood and T. C. Gibb, "Mössbauer Spectroscopy," Chapman and Hall, London, 1971.
(37) K. Murakawa, J. Phys. Soc. Jap., 27, 1690 (1969); J. Childs and L. S. Goodman, Phys. Rev., 170, 50 (1968).
complexes has been generally ignored on the grounds that $\mathrm{q}_{\mathrm{d}_{2}}$ should be considerably larger than $\mathrm{q}_{\mathrm{p} z}$ and that 4 p orbital populations are likely to be much smaller than the 3d. Korol'kov and Makhanek report ${ }^{38}$ that for $\mathrm{Cu}(\mathrm{I})$ the expectation values for $1 / r^{3}$ are 1.17 and 8.1 au for 4 p and 3 d electrons, respectively. Our calculations using the SCF orbitals of Strange, et al., ${ }^{31}$ yield 1.9 and 4.74 au for the analogous values for $\mathrm{Fe}(0)$ in the ${ }^{7} \mathrm{P}$ state.

Inclusion of the appropriate angular terms in arriving at the values for $e q_{i}$ listed in Table III reduces the difference between the 3 d and 4 p electron contributions even further. The 4 p orbital contribution to the calculated value of $e q_{z z}$ in $\mathrm{Fe}(\mathrm{CO})_{s}$, using available MO eigenvectors as described above, is on the order of $10-20 \%$. Thus, while the 3d orbitals do make the major contributions, the $4 p$ orbitals play a significant role. In discussing changes in the orbital populations in related compounds, the p_{z} orbital changes may be assumed to parallel those in $\mathrm{d}_{z^{2}}$, while the p_{x} and p_{y} orbital changes should follow those for $\mathrm{d}_{x y}, \mathrm{~d}_{x^{2}-y^{2}}$.

The sign of the field gradient is known only for the iron complexes. If, however, we consider the [M$\left.(\mathrm{CO})_{5}\right]^{n}$ species, it is reasonable to assume that the sign of $e q_{z z}$ does not change. The only alteration in the isoelectronic sequence $\mathrm{Mn}(\mathrm{CO})_{5}, \mathrm{Fe}(\mathrm{CO})_{5}$, and $\mathrm{Co}(\mathrm{CO})_{5}{ }^{+}$ is an increase in the central metal nuclear charge. While this should cause a steady contraction of the valence orbitals centered on the metal, it should not alter their relative populations sufficiently to cause the sign to change.

Furthermore, one would expect at least a smooth relationship in the manner in which $e q_{22}$ varies in the series $\mathrm{Mn}(\mathrm{CO})_{5}^{-}, \mathrm{Fe}(\mathrm{CO})_{5}$, and $\mathrm{Co}(\mathrm{CO})_{5}{ }^{+} .{ }^{39}$ If either $\mathrm{Mn}(\mathrm{CO})_{5}$ or $\mathrm{CO}(\mathrm{CO})_{5}{ }^{+}$possessed a sign for $e q_{z z}$ different from that for $\mathrm{Fe}(\mathrm{CO})_{5}$, the value for the other, regardless of which sign is assumed, would not fit well. For example, assume that $e q_{z z}$ for $\mathrm{Mn}(\mathrm{CO})_{\bar{s}}^{-}$is -2.17 . Then the difference in $e q_{z z}$ between $\mathrm{Mn}(\mathrm{CO})_{5}^{-}$and $\mathrm{Fe}(\mathrm{CO})_{5}$ would be on the order of 6.6 . This would suggest that $e q_{z z}$ for $\mathrm{Co}(\mathrm{CO})_{5}^{+}$should be on the order of $10-11 \times 10^{15} \mathrm{esu} / \mathrm{cm}^{3}$, a factor of two greater than the estimated value.

Assuming then that $e q_{z z}$ is positive for all three isoelectronic species, it is of interest to compare the variation in $e q_{z z}$ seen experimentally with the calculated variation in $e q_{\mathrm{d}_{z}{ }^{2}}$, as given in Table III. The variation in the calculated quantity is the result of a full unit difference in charge on the central metal in the series $\mathrm{Mn}(-1), \mathrm{Fe}(0)$, and $\mathrm{Co}(+1)$. The variation in effective nuclear charge on the central metal experienced by the valence electrons in the series $\mathrm{Mn}(\mathrm{CO})_{5}{ }^{-}, \mathrm{Fe}(\mathrm{CO})_{5}$, and $\mathrm{Co}(\mathrm{CO})_{5}{ }^{+}$must be considerably smaller than for the atoms, since much of the electronic charge which would otherwise accumulate on the metal in the more negatively charged species is transferred to the CO groups.

The observed variation in $e q_{z z}$ exceeds the calculated variation in $e q_{d_{2}{ }^{2}}$ for the isoelectronic monatomic species. It therefore appears that there is a shift in the relative magnitudes of the terms of opposite sign in eq 1 , such that the radial orbitals become relatively more

[^5]populated as compared with the axial, with increased charge on the central metal. Since the radial orbitals are more heavily populated than the axial in all three complexes, assuming positive values for $e q_{z z}$, this amounts to saying that the $\left[\mathrm{M}(\mathrm{CO})_{5}\right]^{n}$ species becomes more anisotropic with increasing charge on the central atom. It should be noted, however, that the differential electronic populations involved in creating the nonzero field gradients are not large; the difference in $\mathrm{d}_{2^{2}}$ and $\mathrm{d}_{x^{2}-y^{2}}$ populations from Schreiner and Brown's molecular orbital results for $\mathrm{Fe}(\mathrm{CO})_{\mathrm{j}}$ is, for example, only 0.2 electron. Assuming this were correct for $\mathrm{Fe}(\mathrm{CO})_{5}$, the analogous differential populations for $\mathrm{Mn}(\mathrm{CO})_{5}^{-}$and $\mathrm{Co}(\mathrm{CO})_{5}{ }^{+}$might be on the order of 0.1 and 0.3 , respectively. It would be of interest to know the chemical shift anisotropies for ${ }^{55} \mathrm{Mn}$ and ${ }^{59} \mathrm{Co}$ in these two ions; the prediction is that the anisotropy is smaller for ${ }^{55} \mathrm{Mn}$.

It is difficult to draw many firm conclusions from the limited data available for substituted systems. The most reliable interpretations can be placed on those systems for which the substitution occasions no structural changes in terms of bond angles. This includes the disubstituted systems, in which the phosphines or phosphites are located axially, and the pentakis(phosphite) compound, $\mathrm{Co}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{3}{ }^{+}$.

The values for $\mathrm{Co}(\mathrm{CO})_{5}{ }^{+}$and $\mathrm{Co}\left(\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{5}{ }^{+}\right.$must be regarded as essentially the same, since the former value is only an estimate. The result tells little about the binding of $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ as compared with CO , since so many parameters (both σ - and π-bonding capabilities of CO and $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ in both apical and radial positions) are involved. The results for the $\left[\mathrm{M}(\mathrm{CO})_{3} \mathrm{P}_{2}\right]^{n}$ compounds as compared with the parent compounds are more interesting. Since $e q_{z z}$ for the cobalt compounds were employed to estimate $e q_{2 z}$ for $\mathrm{Co}(\mathrm{CO})_{5}{ }^{+}$, the data for the Fe compounds provide the only entirely independent data for examination. Substitution of $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ for axial CO groups leads to a decrease in $e q_{22}$, whereas an increase is seen upon PPh_{3} substitution.

Bancroft and Libbey have recently reported ${ }^{40}$ the Mössbauer spectra of an extensive series of low spin iron(II) compounds, from which they have derived a series of ligand partial field gradient (pfg) parameters. Since the complexes are all six-coordinate, it is not to be expected that the derived pfg parameters are transferable to five-coordinate compounds. Nevertheless, the results are of interest here because they represent the only pfg parameters for ligands such as CO , phosphines, and phosphites. Although the pfg parameters do not transfer quantitatively, one might ask whether their relative values remain the same in the five-coordinate systems. The pfg parameters reported by Bancroft and Libbey for $\mathrm{CO}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$, and PPh_{3} are $-0.55,-0.65$, and -0.53 , respectively. Taking account of only the relative values, it would thus be predicted that axial substitution of CO in the five-coordinate systems by PPh_{3} would result in an increase in $e^{2} q_{2 z} Q / h$, whereas replacement by $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ would result in a decrease, as
(40) G. M. Bancroft and E. T. Libbey, J. Chem. Soc., Dalton Trans., 2103 (1973).
observed. It thus appears that the relative values of pfg parameters for these three ligands do remain the same, even though the relative importances of σ - and π-bonding surely change in going from six-coordinate $\mathrm{Fe}(\mathrm{II})$ to five-coordinate $\mathrm{Fe}(0)$.

The changes in $e q_{z z}$ upon substitution of one phosphine or phosphite in place of CO cannot be readily explained in the absence of structural data, since it is not clear how much the central metal is displaced from the plane of the radial CO groups. These displacements may be large enough to make a significant contribution to changes in $e q_{z z}$. This is especially true in the case of the mono-substituted Fe compounds, in which the changes are small. Thus we base our discussion on the bis-substituted derivatives of $\mathrm{Fe}(\mathrm{CO})_{5}$.

The radial CO stretching frequency (E mode) may be used as a gauge of relative π-accepting and σ-donating capacities of axial $\mathrm{CO}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$, and PPh_{3} in the complexes $\mathrm{Fe}(\mathrm{CO})_{5}$ and $\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{P}_{2}$. Substantial decreases are observed in this frequency in the order $\mathrm{Fe}(\mathrm{CO})_{5}>\mathrm{Fe}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{2}>\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$. The CO frequency variation may be ascribed in large measure to differences in π-accepting capability of the axial ligands. Thus, in this series of complexes we order the ligands $\mathrm{CO}>\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}>\mathrm{PPh}_{3}$, as regards π-acid behavior, in accord with conventional notions.

The values of $e q_{z z}$ observed for these complexes indicate that, according to eq $1, \mathrm{PPh}_{3}$ must be acting as either a strong π-acceptor or weak σ-donor relative to CO , since the value of the term $N_{\mathrm{d}_{z}}+1 / 2\left(N_{\mathrm{d}_{x z}}+N_{\mathrm{d}_{y z}}\right)$ must be smaller for $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ as compared with $\mathrm{Fe}(\mathrm{CO})_{5}$. Since the ir data indicate that PPh_{3} is a poorer π-acceptor than CO , we conclude that the phosphine also functions as a poorer σ-donor in Fe $(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$. The behavior of $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ cannot be analyzed so simply since the value of $e q_{z z}$ for $\mathrm{Fe}(\mathrm{CO})_{3^{-}}$ $\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]_{2}$ is consistent with either poorer π-accepting or better σ-donating capacity of the ligand relative to CO .

Unfortunately the values of $e q_{22}$ for the bis-substituted Mn complexes are not available. However, the data for mono-substituted Mn complexes suggest that the $\mathrm{Mn}(\mathrm{CO})_{3} \mathrm{P}_{2}-$ derivatives might both exhibit field gradients substantially larger than that of Mn -$(\mathrm{CO})_{5}^{-}$. This result would lead to the conclusion that both PPh_{3} and $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ behave as poorer σ-donors relative to CO in the Mn series.

These results are consistent with the idea that low valent metals, such as $\mathrm{Fe}(0)$ and $\mathrm{Mn}(-1)$ in the complexes studied, are relatively resistant to σ-donation by ligands which cannot adequately drain away excess electron density through π back-bonding. A single ordering of ligands as regards σ - and π-bonding capacities may therefore not be applicable to all organometallic systems.

Supplementary Material Available. Analytical data will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche ($105 \times 148 \mathrm{~mm}, 24 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JACS-74-4149.

[^0]: (1) This research was carried out through support by The National Science Foundation via Contract GH-33634 with The Materials Research Laboratory, University of Illinois, and Research Grants GP 6396X and GP 30256X. The Wilks NQR spectrometer was purchased through support from the Advanced Research Projects Agency, Contract ARPA-HC-15-57-C-0221 with The Materials Research Laboratory.
 (2) University of Illinois Fellow, 1969-1971.

[^1]: (3) T. L. Brown, P. A. Edwards, C. B. Harris, and J. L. Kirsch, Inorg. Chem., 8, 763 (1969).
 (4) P. Kienle, Phys. Verh., 3, 33 (1963).
 (5) R. H. Herber, R. B. King, and G. K. Wertheim, Inorg. Chem. 3, 101 (1964).
 (6) R. L. Collins and R. Pettit, J. Amer. Chem. Soc., 85, 2332 (1963); J. Chem. Phys., 39, 3433 (1963).
 (7) R. B. King, J. C. Stokes, and T. F. Korenowski, J. Organometal. Chem., 11, 641 (1968).
 (8) R. B. King and F. G. A. Stone, Inorg. Syn., 7, 193 (1963).

[^2]: (9) W. Hieber and G. Wagner, Z, Naturforsch. B, 13, 339 (1958).
 (10) W. Hieber, G. Faulhaber, and F. Theubert, Z. Naturforsch. B, 15, 326 (1960).
 (11) P. M. Treichel and J. J. Benedict, J. Organometal. Chem., 17, P37 (1969).
 (12) W. Hieber, H. Höfler, and J. Muschi, Chem. Ber., 98, 311 (1965).
 (13) W. Hieber, G. Faulhaber, and F. Theubert, Z. Anorg. Allg. Chem., 314, 125 (1962).
 (14) J. D. Cotton and R. L Heazlewood, Aust. J. Chem, 22, 2673 (1969).
 (15) F. A. Cotton and R. V. Parish, J. Chem. Soc., 1440 (1960).
 (16) S. Attali and R. Poilblanc, Inorg. Chim. Acta, 6, 475 (1972).
 (17) K. J. Coskran, T. J. Huttemann, and J. G. Verkade, Advan. Chem. Ser., No. 62, 590 (1967).

[^3]: (18) R. A. LaRossa and T. L. Brown, J. Amer. Chem. Soc., 96, 2072 (1974).

[^4]: (32) B. A. Frenz and J. A. Ibers, Inorg. Chem., 11, 1109 (1972).

[^5]: (38) V. S. Korol'kov and A. G. Makhanek, Opt. Spectrosc. (USSR), 12, 87 (1962).
 (39) G. M. Bancroft, Chem. Phys, Lett., 10, 449 (1971).

